p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.36D8, C24.156D4, C23.33SD16, C22.33(C2×D8), C22.4Q16⋊5C2, C23.747(C2×D4), (C22×C4).277D4, (C22×C8).16C22, C22.49(C2×SD16), C4.18(C42⋊C2), C23.7Q8.9C2, (C23×C4).243C22, C2.1(C22.D8), C22.28(D4⋊C4), C23.199(C22⋊C4), (C22×C4).1334C23, C2.1(C23.47D4), C22.52(C8.C22), C2.11(C23.34D4), C2.19(C23.38D4), C4.103(C22.D4), C22.78(C22.D4), (C2×C4⋊C4)⋊28C4, C4⋊C4.194(C2×C4), (C2×C4).1324(C2×D4), C2.19(C2×D4⋊C4), (C22×C4⋊C4).13C2, (C2×C22⋊C8).17C2, (C2×C4⋊C4).41C22, (C2×C4).740(C4○D4), (C2×C4).367(C22×C4), (C22×C4).266(C2×C4), (C2×C4).126(C22⋊C4), C22.257(C2×C22⋊C4), SmallGroup(128,555)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C22 — C2×C4 — C22×C4 — C2×C4⋊C4 — C22×C4⋊C4 — C23.36D8 |
Generators and relations for C23.36D8
G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=c, dad-1=eae-1=ab=ba, ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bcd-1 >
Subgroups: 348 in 172 conjugacy classes, 68 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C24, C2.C42, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C23×C4, C23×C4, C22.4Q16, C23.7Q8, C2×C22⋊C8, C22×C4⋊C4, C23.36D8
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, C4○D4, D4⋊C4, C2×C22⋊C4, C42⋊C2, C22.D4, C2×D8, C2×SD16, C8.C22, C23.34D4, C2×D4⋊C4, C23.38D4, C22.D8, C23.47D4, C23.36D8
(1 29)(2 57)(3 31)(4 59)(5 25)(6 61)(7 27)(8 63)(9 28)(10 64)(11 30)(12 58)(13 32)(14 60)(15 26)(16 62)(17 48)(18 51)(19 42)(20 53)(21 44)(22 55)(23 46)(24 49)(33 52)(34 43)(35 54)(36 45)(37 56)(38 47)(39 50)(40 41)
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 9)(17 39)(18 40)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 60)(26 61)(27 62)(28 63)(29 64)(30 57)(31 58)(32 59)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 49)(48 50)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 63)(10 64)(11 57)(12 58)(13 59)(14 60)(15 61)(16 62)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 56)(24 49)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)(40 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 23 29 56)(2 45 30 36)(3 21 31 54)(4 43 32 34)(5 19 25 52)(6 41 26 40)(7 17 27 50)(8 47 28 38)(9 49 63 24)(10 37 64 46)(11 55 57 22)(12 35 58 44)(13 53 59 20)(14 33 60 42)(15 51 61 18)(16 39 62 48)
G:=sub<Sym(64)| (1,29)(2,57)(3,31)(4,59)(5,25)(6,61)(7,27)(8,63)(9,28)(10,64)(11,30)(12,58)(13,32)(14,60)(15,26)(16,62)(17,48)(18,51)(19,42)(20,53)(21,44)(22,55)(23,46)(24,49)(33,52)(34,43)(35,54)(36,45)(37,56)(38,47)(39,50)(40,41), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,49)(48,50), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,49)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,23,29,56)(2,45,30,36)(3,21,31,54)(4,43,32,34)(5,19,25,52)(6,41,26,40)(7,17,27,50)(8,47,28,38)(9,49,63,24)(10,37,64,46)(11,55,57,22)(12,35,58,44)(13,53,59,20)(14,33,60,42)(15,51,61,18)(16,39,62,48)>;
G:=Group( (1,29)(2,57)(3,31)(4,59)(5,25)(6,61)(7,27)(8,63)(9,28)(10,64)(11,30)(12,58)(13,32)(14,60)(15,26)(16,62)(17,48)(18,51)(19,42)(20,53)(21,44)(22,55)(23,46)(24,49)(33,52)(34,43)(35,54)(36,45)(37,56)(38,47)(39,50)(40,41), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,49)(48,50), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,49)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,23,29,56)(2,45,30,36)(3,21,31,54)(4,43,32,34)(5,19,25,52)(6,41,26,40)(7,17,27,50)(8,47,28,38)(9,49,63,24)(10,37,64,46)(11,55,57,22)(12,35,58,44)(13,53,59,20)(14,33,60,42)(15,51,61,18)(16,39,62,48) );
G=PermutationGroup([[(1,29),(2,57),(3,31),(4,59),(5,25),(6,61),(7,27),(8,63),(9,28),(10,64),(11,30),(12,58),(13,32),(14,60),(15,26),(16,62),(17,48),(18,51),(19,42),(20,53),(21,44),(22,55),(23,46),(24,49),(33,52),(34,43),(35,54),(36,45),(37,56),(38,47),(39,50),(40,41)], [(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,9),(17,39),(18,40),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,60),(26,61),(27,62),(28,63),(29,64),(30,57),(31,58),(32,59),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,49),(48,50)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,63),(10,64),(11,57),(12,58),(13,59),(14,60),(15,61),(16,62),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,56),(24,49),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48),(40,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,23,29,56),(2,45,30,36),(3,21,31,54),(4,43,32,34),(5,19,25,52),(6,41,26,40),(7,17,27,50),(8,47,28,38),(9,49,63,24),(10,37,64,46),(11,55,57,22),(12,35,58,44),(13,53,59,20),(14,33,60,42),(15,51,61,18),(16,39,62,48)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 4R | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C4○D4 | D8 | SD16 | C8.C22 |
kernel | C23.36D8 | C22.4Q16 | C23.7Q8 | C2×C22⋊C8 | C22×C4⋊C4 | C2×C4⋊C4 | C22×C4 | C24 | C2×C4 | C23 | C23 | C22 |
# reps | 1 | 4 | 1 | 1 | 1 | 8 | 3 | 1 | 8 | 4 | 4 | 2 |
Matrix representation of C23.36D8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 10 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
10 | 10 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 6 | 0 | 0 |
0 | 0 | 14 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 9 |
0 | 0 | 0 | 0 | 15 | 11 |
11 | 2 | 0 | 0 | 0 | 0 |
7 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 15 |
0 | 0 | 0 | 0 | 7 | 7 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,10,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,12,0,0,0,0,10,0,0,0,0,0,0,0,6,14,0,0,0,0,6,0,0,0,0,0,0,0,6,15,0,0,0,0,9,11],[11,7,0,0,0,0,2,6,0,0,0,0,0,0,16,0,0,0,0,0,15,1,0,0,0,0,0,0,10,7,0,0,0,0,15,7] >;
C23.36D8 in GAP, Magma, Sage, TeX
C_2^3._{36}D_8
% in TeX
G:=Group("C2^3.36D8");
// GroupNames label
G:=SmallGroup(128,555);
// by ID
G=gap.SmallGroup(128,555);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,58,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=c,d*a*d^-1=e*a*e^-1=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^-1>;
// generators/relations